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Abstract. The differentiation of tensors in spherical coordinates is analysed for two distinct 
cases: when the result is a tensor of a rank higher, or lower, than the spherical tensor 
subjected to differentiation. General analytical expressions are obtained leading to 
equations applicable to particular problems of the theory of light scattering and absorption. 

The relationships obtained are used for defining spherical tensors of polarisability [I,,, 
hyperpolarisability B,,k and dipole-quadrupole polarisability A,,,, for isolated molecules 
as well as the tensor of interaction-induced polarisability of a molecular sample taking 
into account intermolecular interactions in the approximation of the dipole-induced dipole 
( D I D )  model. 

1. Introduction 

Certain tensorial quantities, for example the directional force of an oscillator, the stress 
tensor, electric multipole moments, the polarisabilities of molecules, etc, are defined 
in Cartesian space by the use of derivatives of the appropriate tensors with respect to 
the others (Kielich 1981, Applequist 1984). The tensors thus defined are then trans- 
formed directly or by the step-by-step coupling method to a system of spherical 
coordinates (Coope 1970, Stone 1975, 1976, Normand and Raynal 1982). Often, the 
tensor obtained by differentiation in Cartesian coordinates is of a structure so highly 
complicated as to render its transformation to spherical coordinates extremely tedious. 
It is then more convenient to transform the tensor prior to differentiation (its structure 
is then quite simple) into spherical coordinates first and then to perform the operation 
of differentiation in spherical coordinates. 

In the present paper, we shall be dealing with the differentiation of spherical tensors. 
In 0 3 we analyse the problem of differentiating a spherical tensor as the result of 
which one obtains a tensor of a rank higher than that of the initial tensor. This is the 
case, for example, when it comes to determine a generalised electric multipole polarisa- 
bility. With this aim, we apply the expression proposed by Kielich (1965a, b, 1966) 
for the induced molecular multipole moment of order n: 

t This work was carried out under research project CPBP 01.12.5.6. 
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where E'",' is the amplitude of the n,-fold gradient of the external electric field strength 
and (nl + . . . + ny) stands for ( n ,  + . . . + n,)-fold contraction. The polarisability tensor 
of rank ( n  + U,+. , .+ n,) is obtained on performing the following operation of 
differentiation (Applequist 1984): 

a { n + n , +  +n,) = a'"n ' , /a~{nI ' .  . . aE'n81 

We shall be having recourse to particular cases of these two equations in the course 
of the present study. 

In 0 4, we consider the case when the spherical tensor corresponds to a Cartesian 
polyade (affinor) and is to be differentiated with respect to one of the elements of the 
polyade. One then arrives at a spherical tensor of a rank lower than that of the tensor 
subjected to differentiation. This is the situation we deal with when differentiating a 
polyade of the nth rank A""= A"' .  . . n times . . . A"', formed from the vector A{" 
with respect to an arbitrary component of the latter. 

Section 5 is devoted to the determination of spherical tensors of molecular polarisa- 
bility by the technique of differentiation in a system of spherical coordinates. Our 
calculations lead to the dipolar polarisability tensor for an isolated molecule and to 
the tensor of interaction-induced polarisability in the DID approximation. Moreover, 
a relation is established between the spherical hyperpolarisability tensor and the second 
derivative of the dipole moment of the molecule with respect to variations of the 
external electric field. The last example of the application of the formulae derived in 
this work is related to the determination of the spherical tensor of dipole-quadrupole 
molecular polarisability, where we have drawn attention to the problem of symmetrisa- 
tion of the tensors obtained as the result of differentiation. 

2. The fundamental equations 

Let us consider a system of reference defined by the components ei (i  = x, y,  z )  of the 
unit vector e. We use these components to construct a circular system d= "determined 
by the unit vector e"' with the following components, in the phase convention of Fano 
and Racah (1959) 

(1) 

These components (1) form the self-conjugate and normalised basis of the circular 
system 

where e[' '  is a vector of the contravariant basis (Varshalovich et a1 1975, Oigo 1975). 
The inner product of the first kind (scalar product) of two vectors A and B defined 

in the system C is 

This product, being invariant with respect to transformations from one system of 
reference to another, can serve as a method of determining the shape of tensors in a 
selected system. 
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We now proceed to calculate the scalar product of the Cartesian tensor Ail...i,,, which 
transforms according to the three-dimensional group of rotations, with the unit vector 
in n-dimensional space 

n n 

U, = Ai,...in n ei, = n A:,’e[b,’ . . . e“] U” 

j = 1  uI. . .u.  i = l  
(4) 

where we had recourse n times to the relation (3)  and took into account that All,..i , ,  = 
Ail...Ai,, . Equation (4) contains the n-fold irreducible tensorial product ll A‘” (coupling 
of tensors) which, for two spherical tensors of the ranks k and l, is defined as follows 
(Varshalovich et a1 1975): 

On inversion of (5a) ,  we obtain 

The subscript A ( p )  labels the ( 2 k + l )  components of the tensor A‘k’ (the (21+1) 
components of B“’) ,  whereas [ a b . .  . f ]  = [(2a + 1)(2b + 1 )  . . . (2f+ 1)]’’2 and (,” ;) 
is a 3 j  coefficient. 

In conformity with the principle of tensor coupling, (5b) yields 

Thus, the spherical tensor A(dl-d,i) of rank d ,  has arisen as the result of ( n  - 1 )  vector 
couplings within the nth rank polyade: 

where v, = X ai. We use the product of basis vectors of (4) to construct an irreducible 
basis of nth order in accordance with (5a, b): 

”I ... U,,- I 

The successive steps of coupling, leading to the tensor A (or e)  in accordance with 
(7), as determined by d ,  , . . . , d,- l ,  have been written out so as to distinguish different 
spherical tensors with the same d, .  This was necessary, since knowledge of the 
transformational properties of a tensor is still insufficient for disclosing the coupling 
sequence from which it has arisen. It will be remembered that tensors with the same 
d, transform identically (Oigo 1975). 

In the preceding formulae, d ,  = 1 and v l  = al. With the basis thus determined, we 
rewrite (4) and (7) in the form 
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The basis (8) ,  with respect to (2), is also self-conjugate and normalised in n-dimensional 
tensorial space: 

(10) e ( d , . . . d , , l  [<; ... d,',l = 
Vi8 e "il &I; . . . &ll,d;'%s";r. 

We shall henceforth be dealing with tensors of the type (9b)  without entering into 
the problem of their decomposition into irreducible tensors, or into problems concern- 
ing their symmetricity. 

3. Differentiation of a spherical tensor A with respect to an unlike tensor B 

Let us now consider a Cartesian tensor of rank (m + n )  obtained by differentiation of 
a component of an nth rank tensor with respect to another tensor of rank m:  

Li l,..tnjl...j,,, = JAil...inlJBjl..,J,,,. (11) 
The above operation enables us to gain information concerning the inner structure of 
the tensor A, i.e. to determine the presence of the tensor B in it and to elucidate how 
B is connected with the other tensors which, jointly with B, form the tensor A. However, 
differentiation is unable to lead to a decision concerning the nature of the internal 
connections between the tensors contained in the tensor L. This signifies that, for 
example, contraction 

._ L,, ... I, , ,  , . . .J, , ,  - -  L i l  ... ' , , I  , ...J<~, k I .. . k ,  ck, ... k ,  

cannot be detected usin; (1 1) alone. 

coordinates. This leads to 
Applying (4) and (61, we transform the left-hand side of (11) to a system of spherical 

m 

u n + m  5 Li l . . . i , l l . . . j , , ,  ri ezs n ej, 
s = 1  r = 1  

In (12), the basis tensor used in order to represent L in irreducible form has been 
written as the product of the two bases II" e, and IIm el. This was feasible because the 
space in which the tensors of the nth and mth rank have been defined is in no direct 
relationship with the coupling of these tensors. That is to say, coupling does not affect 
the succession in which the two tensors act (Biedenharn and Louck 1981). 

We transform the right-hand side of (1 1) to spherical coordinates by forming the 
inner product and step-by-step coupling (cf (7 ) )  of the spherical vectors obtained. We 
obtain 
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On contraction of the tensors A and B in the right-hand term of (13a)  using (4) (which 
leads to the emergence of scalar expressions in the derivative) and making use of ( 2 ) ,  
we obtain 

Y I ... Y,, 

On combining (12) and (13b) and on elimination of the m-dimensional bases by means 
of ( 2 ) ,  we arrive at 

where the presence of the n-dimensional contravariant bases is due to our having 
applied the rule (8) to the n-fold products in (12) and (13b). Obviously, these bases 
can be eliminated from (14) by having recourse to the fact that they are normalised 
in the meaning of (10). On carrying out the above we immediately obtain the differential 
of the tensor A in the following form: 

d ;  ... d ,  

On summation over P I ,  . . . , Pm we have 
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where we have applied the well known relation (Varshalovich et a1 1975) 

a@-? c ( - 1 )  
a + h + c - ( a + @ + Y ) ( :  

6 -P ')( P -;) ( Y c p  f -:) 
d e f d e  

- 8  --E -cp ) { c  a 5). 
The symbol {i ," F }  denotes the 6j  coefficient. With regard to the fact that, by (9b), 
we have 

the orthogonality condition (10) valid for different bases e'dl,-di#t) enables us to write 
the spherical tensor counterpart of (11) in the following form: 

a g ( d  l . . .d , , , )  = aBme(d ,... d ,,,I 
UHI U,,, 

On the other hand, the tensor L can be regarded as the product of two tensors ail, . . i , ,  
and bjl,,,j,,,. In fact, the analytical structure of the right-hand side of (17) resembles 
that of the spherical tensor representation of the outer product of these two tensors 
(Stone 1976). It is of essential importance that the tensor L a  result of differentiation- 
permits the unequivocal decision as to which of the tensors A with the same k, was 
subjected to differentiation ( L  is dependent on k, . . . kn-l) .  It is not possible, however, 
to obtain equally precise information for the tensor B. It should be noted that the 
tensor L ( k ~ . ~ ' k ~ ~ + ~ ~ t ) ,  obtained in (17), has the type of symmetry resulting from the coupling 
scheme (7). 

Especially simple is the result of differentiation of the tensor A with respect to 
variations of the vectorial field ( m  = 1 ) .  Here, by (17), we obtain 

whence, by inversion of the above equation, 

We note that the above results permit multiple 
respect to variations of one or several tensorial 
(18a) that 

differentiation of the tensor A with 
fields. In particular, it results from 

4. Differentiation of a tensor, arising from the coupling of n identical vectors, with 
respect to one of the vectors 

In the preceding section, we discussed the case of differentiation of a tensor of rank 
n with respect to a tensor of rank m, when the result of the operation of differentiation 



Spherical tensor diflerentiation 83 1 

had to be written in a basis of the order n + m. We shall now consider a tensor of the 
rank n constructed from components of a vector A"' in conformity with the rule of 
coupling (6). The latter leads to 

171...v,p.l 

Let us have a look at the derivative of the tensor (20) taken with respect to an arbitrary 
component of A"'. We obtain 

v (... 

where we have introduced the following notation: 

In deriving ( 2 1 ) ,  we have made use of the relation 

aALt,'/aA!," = (22) 

The latter results immediately from (18a) since differentiation of a vector with respect 
to itself leads to an irreducible spherical tensor of rank 0. 

The operation of differentiation in the right-hand term of (21) can be rewritten as 
follows by having recourse to (22): 

whence, by (6), 

On insertion of (24) into ( 2 1 )  and on carrying out the necessary summations in 
accordance with formula ( 16), we finally obtain 

where 

r( k ,  . . . krill . . . 
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For n = 1 we have r(kil,,)= 1,  and differentiation of (25) gives a result which is in 
agreement with (22). We see from (25) that the expression of the result of a differenti- 
ation like this does not involve a basis of an  order higher than the basis employed 
when constructing the tensor A ' k l . . k * ~ ' .  Differentiation of the type (25) will lead to a 
reduction of the order of the basis. 

From ( 2 5 ) ,  it results that 

-=(-1)"~[k,](1+(-1)~2) aAy,k?) ( k2)  A::, 
aA'," A 

The preceding result (27) enables us to draw the significant conclusion that differenti- 
ation of an  antisymmetric tensor of the second rank gives zero. Obviously, twofold 
differentiation of such a tensor gives the same. From ( 2 5 ) ,  we obtain for n = 3 that 

If the tensor of rank 3 is antisymmetric in two indices (i.e. k, = l ) ,  differentiation of 
the type (28) gives 

-- aAy:k3' - (-l)k3+u3[k3] 
aA:') 

and we obtain an antisymmetric tensor corresponding to a Cartesian tensor of rank 2. 
The preceding discussion shows that differentiation of antisymmetric tensors as 

well as differentiation with respect to antisymmetric tensors has to be performed very 
cautiously. Thus, for example, the result of differentiation of an arbitrary tensor with 
respect to an  antisymmetric tensor of the second rank is indeterminate. 

5. Applications 

5.1. The polarisability tensor of rank 2 of an isolated molecule 

We shall now apply the differential formulae derived above to the definition of some 
well known currently used tensorial quantities. Let us consider (186) for n = 1 ,  
assuming the tensor A to stand for the dipole moment m induced in a molecule and 
B to represent the vector of the electric field E interacting with the molecule. Accord- 
ingly 

We write the components of the spherical vector of the dipole moment as follows 
(Kaimierczak 1985): 

with a"' the spherical tensor of linear (second-rank) molecular polarisability. On 
inserting (31) into (30a) and applying (25) with n = 1 ,  or (22), we obtain 

~ ' ~ 2 '  = a( ' )ak2 / .  (306) 
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Thus, the polarisability tensor a is defined as follows in spherical coordinates: 

corresponding to a,, = am, /aE,  in Cartesian coordinates (Kielich 1981). 

5.2. The tensor of interaction-induced polarisability of order 2 in the D I D  approximation 

Equation ( 3 2 )  allows us to determine the spherical tensor of interaction-induced 
polarisability of order 2 if the dipole moment m is induced as the result of interactions 
between the molecules. In accordance with ( 3 2 ) ,  we write the tensor in question, for 
a molecular sample interacting as a whole with the external field of strength E, as 
follows: 

where summation over ' i '  extends over all N molecules of the sample and the induced 
dipole moment is expressed by 

Above, 'F is the vector of the molecular electric field produced at the centre of the ith 
molecule by the dipole moments induced in the other (N - 1) molecules of the sample 
(Kielich 1981): 

where T ( r , , )  is the tensor of dipole-dipole interaction dependent on the distance r,, 
separating the molecules. In  the lowest order of approximation of dipole-induced 
dipole ( D I D )  interaction, the dipole moment 'm"' is given by (31). 

Now, considering the form of the dipole moment (341, we have by (33) (see 
appendix): 

where 'L  is the tensor we get by differentiation of the molecular field vector ' F  with 
respect to variations of the electric field E. With regard to (35) as well as (A7) and 
( 3 0 b ) ,  we obtain (Kaimierczak 1982): 

Finally, on insertion of (37) into (36a 1, the interaction-induced polarisability tensor 
of second rank of the molecular sample in the lowest order of the D I D  approximation 
takes the following form (Kaimierczak and  Bancewicz 1984, De Santis and  Sampoli 
1984): 
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The result ( 3 6 b ) ,  in Cartesian coordinates, corresponds to the earlier formula (Kielich 
and Woiniak 1974, Kielich 1981): 

AH = - 1 ' a  * T (  r v )  'a. 
N 

1. I 
( I # ] )  

Hitherto, in papers dealing with the tensor An, its spherical representation has 
been derived by direct transformation of the preceding formula to a system of spherical 
coordinates. 

5.3. The third rank tensor of polarisability (hyperpolarisability) of an isolated molecule 

The spherical tensor of the electric dipole moment, induced in an isolated molecule 
in the process of two-photon polarisation, can be expressed by the equation (Ozgo 
1975): 

to which there corresponds the following expression in Cartesian coordinates (Kielich 
1980): 

M = f B :  EE. 

In ( 3 8 )  B'b," is the non-symmetrised spherical tensor of molecular hyperpolarisability, 
and E'b'  corresponds to the dyad EE composed of the vector of the external electric 
field with which the molecule is at interaction. Assuming the tensor to be symmetric 
( b  # l ) ,  we have by (38 )  

where we have made use of the relations (22 )  and (27 ) .  At the same time, from (19 ) ,  
we find that 

On combining ( 3 9 a )  and ( 3 9 6 )  and on summation over the 3j coefficients, applying 
(16 )  and the orthogonality relation for these coefficients, we obtain 

whence we arrive directly at the definition of the hyperpolarisability tensor B'h.Ai) by 
way of the second derivative of the dipole moment (38 )  on replacing L1kzk3) by the 
expression obtained on inversion of (39b) :  

I t  is easy to check that the preceding result is identical with that obtained by inversion 
of (39a) .  
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5.4. The dipole-quadrupole polarisability of a molecule 

The preceding examples illustrate different applications of the formula (17) for m = 1 .  
Here, we shall deal with the problem of differentiation with respect to a tensor of rank 
2 ( m  = 2).  To this aim, we consider the tensor of dipole-quadrupole molecular 
polarisability Aijk used for the description of the  mechanism of induction of a molecular 
dipole moment by the gradient of an  external electric field, as well as the induction 
of a quadrupole moment (Tabisz 1979): 

To establish the relationship between A and am/a(VE) ,  it suffices to put n = 1 and 
m = 2 in (17 ) .  We immediately obtain 

Equation (43) gives the tensor A11k2k3', albeit in non-symmetrised form. It is composed 
in accordance with the rule (7), i.e. according to the scheme 

A ( l k , k , l  = [ (Ali l@All l  l k  1 ~ ( 1 )  lk , )  )IO 1 . 
Thus, the above scheme corresponds to the construction of the tensor of (42) and 
its relation to d Q / d E  can be obtained directly from (18a). On the other hand, from 
the form in which (41) is expressed, it results that the tensor A,jk has to be coupled 
according to the scheme 

A I  I k j k , )  = [AI 1 1 0  ( A I  " @ A I  1 ) ) I k ; ) ] ( k > ) .  

Thus, we come upon the problem of symmetrisation of the tensors obtained by way 
of differentiation. In the present example, we no more than state the problem. 

The relation between the preceding coupling schemes is the following (Biedenharn 
and Louck 1981, Varshalovich et a1 1975): 

On insertion of (44) into (43) and on summation over k2 we obtain 

whence, on  inversion of the equation, we obtain 

The spherical tensor A("2k1' thus obtained now possesses the required symmetry in 
accordance with the symmetry of the Cartesian tensor A,. J k .  
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Appendix 

The following tensorial product 

1 (AI)  

is to be differentiated with respect to a tensor B"'. In  ( A l )  let D"' alone be a function 
of B"'. With regard to ( s a ) ,  we obtain 

A" 1 = (C</l@D(l)  ( 1 )  

On applying (18a) with n = 1 to the derivative in  the right-hand term of (A2),  we obtain 

On applying the following formula (Varshalovich et a1 1975): 

d c  

we reduce (A3) to the form 

On multiplying both terms of (A5) by the coefficient 

(: -; - p  7 
and on summation over CY and p, (A5) becomes 

(A6) 
whence, taking into account that the left-hand term of (A6) is equal to LLh" (cf equation 
( 1 8 b ) ) ,  we finally obtain 

L ' " ' = & c  (-l)"h[k] { k l h  1 }  (C '"@L'k ' ) ' " ' ' .  
k 

References 

Applequist J 1984 Chem. Phys. 85 279-90 
Biedenharn L C and  Louck J D 1981 Angular Momentum tn Quanrum Physics. Theory and Application ( N e w  

Coope  J A R 1970 J. Math. fhys.  11 1591-612 
De Santis A and  Sampoli  M 1984 Mol. Phys. 51 97 
Fano U and  Racah G 1959 Irreducible Tensorial Sers (New York: Academic) 
Kaimierczak M 1982 J. Physique Letr. 43 477-82 
__ 1985 Mol. Phys. submitted 

York: Addison- Wesley) 



Spherical tensor diflerentiation 837 

Kazmierczak M and  Bancewicz T 1984 J .  Chem.  Phys. 80 3504-5 
Kielich S 1965a M o l .  Phys. 6 549 
- 1965b A c t a  Phys. Polon. 28 459 
- 1966 A c t a  Phys. Polon. 30 851 
~ 1980 Intermolecular Spectroscopy a n d  Dynamica l  Properlies of Dense Systems (Amsterdam: North- 

- 1981 Molecular  Nonl inear  Optics (Moscow: Nauka)  
Kielich S a n d  Woiniak S 1974 A c t a  Phys. Polon. A 45 163 
Normand J M and  Raynal J 1982 J .  Phys. A :  M a t h .  G e n .  15 1437-61 
Oigo Z 1975 Mul t iharmonic  Molecular  Light Scattering in the Racah  Algebra Approach (Poznan:  U A M )  
Stone A J 1975 M o l .  Phys. 29 1461-71 
- 1976 1. Phys. A :  M a t h .  Gen. 9 485-97 
Tabisz G C 1979 Specialist Periodical Reports 6 136-73 
Varshalovich D A, Moskalev A N and  Khersonskii W K 1975 Quantum Theory of Angular  Momentum 

Holland) p 146 

(Leningrad: Nauka)  


